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A B S T R A C T

Traditional multi-view clustering algorithms, designed to produce hard or fuzzy partitions, often neglect
the inherent ambiguity and uncertainty in the cluster assignment of objects. This oversight may lead to
performance degradation. To address these issues, this paper introduces a novel multi-view clustering method,
termed MvWECM, capable of generating credal partitions within the framework of belief functions. The
objective function of MvWECM is introduced considering the uncertainty in the cluster structure included in the
multi-view dataset. We take into account inter-view conflict to effectively leverage coherent information across
different views. Moreover, the effectiveness is heightened through the incorporation of adaptive view weights,
which are customized to modulate their smoothness in accordance with their entropy. The optimization method
to get the optimal credal membership and class prototypes is derived. The view wights can be also provided as
a by-product. Experimental results on several real-word datasets demonstrate the effectiveness and superiority
of MvWECM by comparing with some state-of-the-art methods.
1. Introduction

Clustering is a prevalent unsupervised learning technique that seeks
to partition the samples in the datasets into groups based on certain
criteria. This process is designed to ensure that samples in the same
group exhibit a high level of similarity, while those in different groups
manifest a low level of similarity. The rapid development of multimedia
technology has allowed us to gather real-world data from multiple
viewpoints, leading to the emergence of multi-view data [1]. For
example, a news story might have commentaries available in English,
French, or German. Similarly, in image analysis, a single image can be
represented using different visual descriptors such as HOG, SIFT, GIST,
and LBP. This type of data is referred to as multi-view data, where each
set of features represents a distinct viewpoint [2].

Data from multiple views often display both consistency and com-
plementarity. Effectively leveraging multi-view data while accounting
for its consistency and complementarity is fundamental to advancing
multi-view clustering techniques. Traditional clustering methods are
typically designed for single-view data. Although it is possible to merge
all feature sets from multiple views into a single one and then apply a
single-view clustering method, this strategy disregards the relationships
among the views and fails to effectively manage the rich information
inherent in multi-view data [3].

As an emerging field of research, Multi-View Clustering (MVC)
has received extensive attention recently [4]. A variety of algorithms
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have been proposed for MVC, encompassing classic methods like spec-
tral clustering, subspace clustering, and manifold learning, as well as
more recent approaches based on deep learning. Zhong et al. [3] pro-
vided two versions of Self-taught Multi-view Spectral Clustering (SMSC)
based on convex combination and centroid graph fusion schemes. Nie
et al. [5] made a multi-view extension of the spectral rotation tech-
nique raised in single view spectral clustering research, and proposed
an adaptive weighted procrustes to consider the varying clustering
capacities of different views. Khan and Hu et al. [6] introduced a new
approach to multi-view subspace clustering. This method is capable of
learning a joint representation that takes into account both the common
aspects shared across multiple views and the unique characteristics of
each independent view. In [7], the authors proposed a multi-view clus-
tering methodology with consensus manifold regularization, built upon
the concept factorization technique. Some researchers have proposed
deep learning-based multi-view clustering methods, which allow them
to utilize additional techniques like the auto-attention mechanism [8],
aimed at calculating the similarity between different samples, and
graph representation [9], which incorporates an intrinsic contrastive
network to ensure the consistency of node representations.

Prototype-based clustering, such as 𝑘-means [10], is one of the
most widely adopted clustering methods due to its straightforward
implementation and intuitive nature. It represents each cluster with
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Fig. 1. An illustrative example of the uncertain cluster assignment in multi-view
clustering.

a prototype and utilizes a relocation mechanism to iteratively reas-
sign data points to clusters. This approach has also been adapted for
multi-view data. Zhang et al. [11] proposed the Two-level Weighted
COllaborative 𝐾-Means algorithm (TW-CO-KM). It enhanced the tradi-
tional 𝑘-means algorithm by introducing a novel mechanism for view
and feature weights in the objective function. Yang et al. [12] extended
Fuzzy 𝐶-Means (FCM) [13] clustering and proposed the Collaborative
Feature-Weighted Multi-View FCM (Co-FW-MVFCM). It can generate
fuzzy partitions for multi-view datasets, enabling the tolerance of un-
certain data points, which hard methods are incapable of handling.
Han et al. [14] proposed a multi-view 𝑘-means clustering with adaptive
sparse memberships and weight allocation.

As can be seen, these multi-view clustering algorithms typically
rely on either hard or fuzzy partitions. However, given the conflicting
information inherent in multi-view data, objects might or might not
clearly belong to a specific cluster [15]. Fig. 1 illustrates a clustering
task on a two-view dataset consisting of fourteen samples. As shown in
the figure, the sample 𝑥 is classified into class 𝜔1 in the first view but
into class 𝜔2 in the second view. From the figure we can see this sample
is situated in the overlapping area between these two classes. With the
information available, it is difficult to determine which specific class it
should be assigned to.

Most existing multi-view clustering methods often struggle with
handling uncertainty and imprecision in the cluster structure. Credal
partitions, as delineated within the framework of belief functions [16,
17], permit ambiguity, uncertainty, or doubt in the assignment of ob-
jects to clusters [18]. Evidential 𝐶-Means (ECM) [19], as an extension
of FCM in belief functions frame, is one of the most commonly used
evidential clustering methods to create credal partitions. Following the
framework of ECM, numerous clustering approaches have subsequently
been introduced. The constrained ECM (CECM) was proposed to in-
troduce the prior knowledge into the objective function [20]. In [21],
credal 𝑐-means (CCM) was introduced to redefine the distance between
prototypes and instances. This adjustment aimed to prevent unreason-
able results when the prototypes of an imprecise cluster are close to the
centers of some specific classes. Gong et al. [22] introduced belief-peaks
evidential clustering, expanding on traditional density peaks clustering
within the belief function framework. Jiao et al. [23] developed a
decision tree based evidential clustering (DTEC) algorithm. In [24], an
evidential transfer clustering method was introduced for the clustering
task when the data are uncertain or insufficient. Unfortunately, these
methods inadequately address the challenges posed by multi-view data.

In this paper1, we propose the Multi-view Weighted Evidential
𝐶-Means (MvWECM) clustering algorithm as an extension of ECM,
enabling its application to multi-view datasets. We outline the main
contributions of our work as follows:

• We introduce an evidential clustering method for multi-view
data based on the theory of belief functions. This method can

1 This paper is an extension and revision of our previous work Zhou et al.
(2021)[25].
2 
effectively utilize information from multiple sources to accom-
plish the task of clustering. The resulting global credal partition
effectively addresses uncertainties that may stem from potential
disagreements between different views.

• In the objective function, the view weights as well as their asso-
ciated entropy are incorporated to quantify the degree of contri-
butions of various views. At the same time, we introduce a term
of collaborative strength which can capture shared information
and complementarity between different views to exploit explicit
cluster structure.

• Using the Coordinate Descent method and Lagrange multiplier
optimization method, the optimal basic belief assignments, view
weights and class prototypes are derived, respectively. In ad-
dition, we discuss the complexity of the proposed clustering
algorithm.

• Experimental results demonstrate that MvWECM outperforms the
state-of-the-art methods on seven benchmarks, as statistically
evidenced by three evaluation metrics.

The remainder of this paper is organized as follows. In Section 2, we
introduce some basic concepts and related works. Section 3 provides a
detailed understanding of the proposed method. In Section 4, perfor-
mance analysis through extensive experiments is reported. In Section 5,
we conclude the paper.

2. Background

This section will briefly introduce the concepts related to belief
function theory (also known as Dempster–Shafer theory (DST) or ev-
idence theory) and ECM. Some related works of MVC are introduced
as well.

2.1. Theory of belief functions

Consider a problem with 𝑐 distinct and mutually exclusive elements.
The frame of discernment can be defined as

𝛺 = {𝜔1, 𝜔2,… , 𝜔𝑐}.
The set formed by all subsets of 𝛺 is called the power set of 𝛺
(containing 2𝑐 elements) and is represented as follows:

2𝛺 = {∅, {𝜔1}, {𝜔2},… , {𝜔𝑐}, {𝜔1, 𝜔2},… , {𝜔1, 𝜔2,… , 𝜔𝑖},… , 𝛺}. (1)

In the application of evidential theory, the obtained uncertain in-
formation is called evidence. It is usually necessary to represent the
evidence in a power set framework, which enables DST to give es-
timates not only for an individual event but also for a collection of
events. This approach significantly enhances the capacity to express
uncertain information effectively. There are three general ways of
evidence representation, including Basic Belief Assignment Function
(BBA), Belief Function (𝐵 𝑒𝑙) and Plausibility Function (𝑃 𝑙).

If there is a set mapping function 𝑚 ∶ 2𝛺 → [0, 1] defined on 2𝛺 that
satisfies
∑

𝐴∈2𝛺
𝑚(𝐴) = 1, 𝑚(𝐴) ≥ 0, (2)

𝑚 is called a mass function, also known as BBA. For a subset 𝐴 ⊆ 𝛺,
𝐴 is said to be a focal element if it satisfies 𝑚(𝐴) > 0. We remark here
that 𝑚(∅) may be positive. When 𝑚(∅) = 0, 𝑚 is called a normalized
mass function. The nature of 𝑚(∅) > 0 in the open world assumption is
discussed in [26]. In this paper, we use ∅ to denote the noisy cluster,
which can be thought of as representing outliers within the dataset.

Assuming that 𝑚(⋅) is the basic belief assignment function, the belief
function and the plausibility function 𝑃 𝑙 ∶ 2𝛺 → [0, 1] are defined as

𝐵 𝑒𝑙(𝐴) =
∑

𝑚(𝐵), ∀𝐴 ⊆ 𝛺 (3)

𝐵 ⊆𝐴,𝐵≠∅
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and

𝑃 𝑙(𝐴) =
∑

𝐵∩𝐴≠∅
𝑚(𝐵), ∀𝐴 ⊆ 𝛺 (4)

respectively. For any subset 𝐴 ∈ 2𝛺, the 𝐵 𝑒𝑙(𝐴) is the sum of the
basic belief assignments corresponding to all subsets of 𝐴, describes the
total amount of support for the proposition 𝐴, and constitutes a lower
bound on the support for the proposition 𝐴. The 𝑃 𝑙(𝐴) is the sum of
the basic belief assignments corresponding to all subsets intersecting
𝐴 that are not empty, which describes the degree of non-rejection of
he proposition 𝐴 and constitutes the upper bound of the support of
he proposition 𝐴. That is, [𝐵 𝑒𝑙(𝐴), 𝑃 𝑙(𝐴)] is the support interval for

proposition 𝐴, and the relationship between the belief function and the
plausibility function can be expressed as

𝑃 𝑙(𝐴) = 1 − 𝑚(∅) − 𝐵 𝑒𝑙(𝐴), (5)

where 𝐴 denotes the complement of 𝐴 in 𝛺.
Smets [27] developed the transferable belief model, which is a two-

level mental model. At the credal level, beliefs are formed using mass
functions, while at the Pignistic level, decisions are made by deriving
a probability function from the mass functions. Smets also proposed
a way to convert the mass function on a power set into a probability
distribution over 𝛺. For a given mass function 𝑚 defined on 2𝛺, the
orresponding Pignistic probability, denoted by 𝐵 𝑒𝑡𝑃 , is defined as

𝐵 𝑒𝑡𝑃 (𝜔𝑖) =
∑

𝐴∋𝜔𝑖

𝑚(𝐴)
|𝐴|(1 − 𝑚(∅)) , 𝜔𝑖 ∈ 𝛺 , (6)

where |𝐴| denotes the number of elements contained in the set 𝐴 ⊆ 𝛺.

2.2. Evidential 𝐶-means

Consider a dataset with 𝑛 samples, which is to be grouped into 𝑐
clusters. Define the sample set and the cluster set by

𝑿 = {𝒙1,𝒙2,… ,𝒙𝑛}

and

𝛺 = {𝜔1,… , 𝜔𝑐}
respectively. Let 𝑝 denote the dimension of the data. Under the dis-
criminative framework 𝛺, the basic belief assignment of the 𝑖th sample
is noted as

𝑚𝑖 =
{

𝑚𝑖
(

𝐴𝑘
)

∶ 𝐴𝑘 ⊆ 𝛺}

, 𝑖 = 1, 2,… , 𝑛.
The ECM algorithm obtains the optimal belief assignment matrix 𝑴 =
𝑚𝑖(𝐴𝑘)}𝑛×2𝑐 which is known as a credal partition and the class proto-
ype matrix 𝑽 = {𝒗𝟏, 𝒗𝟐,… , 𝒗𝒄} by minimizing the following objective
unction:

𝐽ECM(𝑴 ,𝑽 ) =
𝑛
∑

𝑖=1

∑

𝐴𝑘⊆𝛺 ,𝐴𝑘≠∅
|𝐴𝑘|

𝛼𝑚𝑖(𝐴𝑘)𝛽𝑑2𝑖𝑘 +
𝑛
∑

𝑖=1
𝛿2𝑚𝑖(∅)𝛽 , (7)

s.t.
∑

𝑘⊆𝛺 ,𝐴𝑘≠∅
𝑚𝑖(𝐴𝑘) + 𝑚𝑖(∅) = 1, (8)

𝑚𝑖
(

𝐴𝑘
)

≥ 0, 𝑚𝑖
(

∅
)

≥ 0. (9)

The parameters 𝛼, 𝛽 and 𝛿 are adjustable. 𝛼 penalizes the focal ele-
ent with a high number of elements. As a smoothing factor, similar

o the exponential weight parameter in the FCM algorithm, 𝛽 con-
trols the usual degree of affiliation [28]. The parameter 𝛿 is adjusted
ccording to the presence or absence of extraneous points in the

data. In the objective function 𝐽ECM, 𝑑𝑖𝑘 denotes the distance (Eu-
clidean distance) between the sample 𝒙𝒊 and the focal element class
center/class prototype (denoted as 𝒗𝒌), which is calculated by the
ollowing equation:
𝑑𝑖𝑘 = ‖𝒙𝒊 − 𝒗𝒌‖2, (10) o

3 
where the focal element class center 𝒗𝒌 is calculated as

𝒗𝒌 = 1
|𝐴𝑘|

𝑐
∑

ℎ=1
𝑠ℎ𝑘𝒗𝒉, with 𝑠ℎ𝑘 =

{

1 if 𝜔ℎ ∈ 𝐴𝑘
0 otherwise.

(11)

In Eq. (11), the symbol 𝒗𝒉 denotes the geometric centers of all sample
points in the category 𝜔ℎ. Let 𝑚𝑖𝑗 ≜ 𝑚𝑖(𝐴𝑗 ), which denotes the basic
belief assignment of the point 𝒙𝑖 with respect to the non-empty focal
element 𝐴𝑗 . Let 𝑚𝑖∅ ≜ 𝑚𝑖(∅) denote the basic belief assignment of the
sample 𝒙𝑖 classified to the empty set.

To minimize 𝐽ECM, an alternating optimization scheme based on
he Lagrange multiplier method can be employed, similar to the ap-
roach used in FCM algorithms. First, we consider that 𝑽 is fixed. To
ddress the constrained minimization problem with respect to 𝑴 , the 𝑛

Lagrange multipliers 𝜆𝑖 can be introduced to construct the Lagrangian:

ℒ (𝑴 , 𝜆1,… , 𝜆𝑛) = 𝐽ECM(𝑴 ,𝑽 ) −
𝑛
∑

𝑖=1
𝜆𝑖

⎛

⎜

⎜

⎝

∑

𝐴𝑗⊆𝛺 ,𝐴𝑗≠∅
𝑚𝑖𝑗 + 𝑚𝑖∅ − 1

⎞

⎟

⎟

⎠

(12)

By differentiating the Lagrangian with respect to the 𝑚𝑖𝑗 , 𝑚𝑖∅, and 𝜆𝑖
and setting the derivatives to zero, the equations for updating the basis
belief assignment matrix for the credal membership of objects can be
derived as follows:

𝑚𝑖𝑘 =
|𝐴𝑘|

−𝛼∕(𝛽−1)𝑑−2∕(𝛽−1)𝑖𝑘
∑

𝐴ℎ≠∅ |𝐴ℎ|
−𝛼∕(𝛽−1)𝑑−2∕(𝛽−1)𝑖ℎ + 𝛿−2∕(𝛽−1)

, (13)

𝑚𝑖∅ = 1 −
∑

𝐴𝑘≠∅
𝑚𝑖𝑘, 𝑖 = 1, 2,… , 𝑛. (14)

Then we can consider that 𝑴 is fixed to update the prototype
atrix 𝑽 , which can be seen as an unconstrained optimization problem.

Setting the partial derivatives of 𝐽ECM with respect to the centers
o zero, we can get the following linear system to update the class

prototype matrix 𝑽 :

𝑯 𝑽 = 𝑩, (15)

where the symbol 𝑯 represents a matrix of (𝑐 × 𝑐), defined as

𝑯 𝑙 𝑘 =
𝑛
∑

𝑖=1

∑

𝐴𝑘⊇{𝜔𝑘 ,𝜔𝑙}
|𝐴𝑘|

𝛼−2𝑚𝛽𝑖𝑘. (16)

The symbol 𝑩 represents a matrix of (𝑐 × 𝑝), defined as

𝑩𝑙 𝑞 =
𝑛
∑

𝑖=1
𝑥𝑖𝑞

∑

𝐴𝑘∋𝜔𝑙

|𝐴𝑘|
𝛼−1𝑚𝛽𝑖𝑘. (17)

To demonstrate the benefits of credal partitions in addressing the
hallenges caused by uncertainty in clustering, we provide the follow-

ing artificial example.

Example. Consider the dataset shown in Fig. 2. We denote 2 clusters
as 𝛺 = {𝜔1, 𝜔2} with their class centers by green dots. It is clear that
the two clusters significantly exhibit overlapping. We consider three
data points {𝑥1, 𝑥2, 𝑥3} marked by dark triangles in the figure. It is
easy to see, the three points have an equal distance to the centers of
the two classes. By the method of ECM and FCM, we can get their
credal membership and fuzzy membership denoted as {𝑚1, 𝑚2, 𝑚3} and
{𝑢1, 𝑢2, 𝑢3}, respectively. The results are shown in Table 1.

As we can see, for the uncertain data points 𝑥1, 𝑥2, 𝑥3, it is hard
to assign them directly to a specific cluster. For the fuzzy partition,
we have 𝑢𝑖({𝜔1}) = 𝑢𝑖({𝜔2}) = 0.5, 𝑖 = 1, 2, 3. However, since 𝑥2
and 𝑥3 are closer to the boundary of the cluster {𝜔1}, they should
ot have the same affiliation as 𝑥1. Instead of relying exclusively
n singletons, credal partitions can express our knowledge pertaining
o the membership of samples for composite clusters and the empty
et. As the distance of the samples 𝑥1, 𝑥2, 𝑥3 from the center of the
ingletons (the green ones) and the center of the composite cluster (the

range one) increases, making the affiliation decrease with it, while
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Table 1
The credal and fuzzy partitions of specific example.

Focal sets 𝑚1 𝑚2 𝑚3 𝑢1 𝑢2 𝑢3
∅ 0 0.3 0.7 – – –
{𝜔1} 0.3 0.2 0.1 0.5 0.5 0.5
{𝜔2} 0.3 0.2 0.1 0.5 0.5 0.5
𝛺 = {𝜔1 , 𝜔2} 0.4 0.3 0.1 – – –

the affiliation of the assignment to the empty set ∅ increases with it. In
specific, as for 𝑥3, it can be considered as an outlier instead of being
assigned to {𝜔1} or {𝜔2}. In sum, credal partitions have a more tolerant
ability for uncertain information.

2.3. Multi-view clustering

As previously mentioned, multi-view clustering stands out as an in-
triguing subject in machine learning. Here some compelling approaches
within the realm of MVC are concisely introduced.

• MCGC [29]: It learns consensus information by using a new dis-
agreement cost function for regularizing graphs and a constrained
Laplacian matrix without any post-processing like 𝑘-means.

• AWP [5]: It extends spectral rotation for multi-view data and ap-
plies an adaptively weighted Procrustes technique which aims to
overcome the deficiency of that extension. And AWP is parameter-
free method, which makes it more applicable.

• TW-CO-KM [11]: It extends 𝑘-means by considering both view
weights and feature weights. A penalty term in objective func-
tion is designed to measure the disagreement in a collaborative
manner.

• CO-FW-MVFCM [12]: This approach contains a two-step schema
under a framework of fuzzy, including a local step and a collabo-
rative step. The former produces local single-view partition, while
the latter shares information between views.

• MVASM [14]: It focuses on constructing a sparse membership
matrix and learning the centroid matrix and its corresponding
view weights. Simultaneously, it converts hard partitions into
fuzzy ones.

• MCHC [30]: It is a multi-view adjacency-constrained hierarchical
clustering approach. The method incorporates the fusion distance
matrices with extreme weights, adjacency-constrained nearest
neighbor clustering and the internal evaluation index to achieve
the promising clustering performance.

• CHOC-MVC [31]: It is a multi-view subspace clustering method
which can unify the consistency and specificity of data in tensor
manner. This model can effectively capture the high-order consis-
tent information while eliminating classification barriers caused
by specific information.

3. Multi-view weighted evidential clustering

In this section, we begin by providing a detailed presentation of the
proposed algorithm MvWECM. Subsequently, the optimization process
is discussed in-depth. The complexity is also analyzed at the end of this
section.

3.1. The objective function

Let 𝑿 = {𝑿[1],𝑿[2],… ,𝑿[𝑡],… ,𝑿[𝑇 ]} denote the dataset with 𝑇
views, and each view has 𝑛 samples, that is,
𝑿[𝑡] = {𝒙1[𝑡],𝒙2[𝑡],… ,𝒙𝑖[𝑡],… ,𝒙𝑛[𝑡]}, 𝑡 = 1, 2,… , 𝑇 .
Suppose the dimension of the data in the 𝑡th view be 𝑞𝑡. As before, we
assume that the dataset has 𝑐 classes denoted by 𝛺 = {𝜔1, 𝜔2,… , 𝜔𝑐}.
Let 𝒘 = {𝑤[𝑡], 𝑡 = 1, 2,… , 𝑇 } denote the set of view weights, where
4 
Fig. 2. An illustrative example comparing fuzzy partition and credal partition.

𝑤[𝑡](𝑤[𝑡] ≥ 0) is the weight of the 𝑡𝑡ℎ view. 𝑚𝑖𝑗 [𝑡] illustrates the basic
belief assignment of 𝒙𝑖 for the class 𝐴𝑗 in the 𝑡th view, while 𝑚𝑖∅[𝑡]
illustrates the basic belief assignment to the empty set in this view.
The matrix of belief assignment of all the samples for the 𝑡th view is
denoted as 𝑴[𝑡]. Similar to 𝛿 in ECM algorithm, the parameter 𝛿[𝑡]
reflects whether the outliers exist in the 𝑡th view. 𝑑𝑖𝑗 [𝑡] denotes the
Euclidean distance between the 𝑖th sample and the center of class 𝐴𝑗
in 𝑡th view. The Euclidean distance is defined as

𝑑𝑖𝑗 [𝑡] = ‖𝒙𝑖[𝑡] − 𝒗𝑗 [𝑡]‖2, (18)

where 𝒗𝑗 [𝑡] is the prototype of class 𝐴𝑗 (𝐴𝑗 ⊂ 𝛺 , 𝐴𝑗 ≠ ∅) in the 𝑡th view.
It can be derived as

𝒗𝑗 [𝑡] = 1
𝑐𝑗

𝑐
∑

ℎ=1
𝑠ℎ𝑗𝒗ℎ[𝑡], with 𝑠ℎ𝑗 =

{

1 if 𝜔ℎ ∈ 𝐴𝑗
0 otherwise.

(19)

In the above equation, 𝑐𝑗 represents the cardinality of the focal set 𝐴𝑗 ,
and 𝒗ℎ[𝑡] is the prototype of the specific class 𝜔ℎ ∈ 𝛺. When 𝑐𝑗 = 1, 𝐴𝑗
represents a specific class, and 𝒗𝑗 [𝑡] is the center of all samples within
that class. When 𝑐𝑗 > 1, 𝐴𝑗 represents an imprecise class, and 𝒗𝑗 [𝑡] is
the center of the prototypes of all included specific classes.

Under the framework of belief functions, with multi-view data, the
objective function of MvWECM can be defined as

𝐽MvWECM(𝑴 ,𝑽 ,𝒘) =
𝑇
∑

𝑡=1
𝑤[𝑡]

⎛

⎜

⎜

⎝

𝑛
∑

𝑖=1

∑

{𝑗|𝐴𝑗⊆𝛺 ,𝐴𝑗≠∅}
𝑐𝛼𝑗 𝑚

2
𝑖𝑗 [𝑡]𝑑

2
𝑖𝑗 [𝑡]

+
𝑛
∑

𝑖=1
𝛿2[𝑡]𝑚2

𝑖∅[𝑡]
⎞

⎟

⎟

⎠

+ 𝜂
𝑇
∑

𝑡=1

𝑇
∑

𝑠≠𝑡
𝐾[𝑡, 𝑠]

𝑛
∑

𝑖=1

∑

{𝑗|𝐴𝑗⊆𝛺 ,𝐴𝑗≠∅}
(

𝑚𝑖𝑗 [𝑡] − 𝑚𝑖𝑗 [𝑠]
)2 𝑑2𝑖𝑗 [𝑡]

+ 𝛽
𝑇
∑

𝑡=1
𝑤[𝑡] log𝑤[𝑡], (20)

s.t.
𝑇
∑

𝑡=1
𝑤[𝑡] = 1, 𝑤[𝑡] ∈ (0, 1], 𝑡 = 1, 2,… , 𝑇 , (21)

∑

{𝑗|𝐴𝑗⊆𝛺 ,𝐴𝑗≠∅}
𝑚𝑖𝑗 [𝑡] + 𝑚𝑖∅[𝑡] = 1, ∀𝐴𝑗 ⊆ 𝛺 , 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 .

(22)

As we can see, there are three terms in the objective function. The
first term computes the weighted sum of squared distances for samples
within each view from the class prototype. This is achieved through a
strategy of assigning weights to the views. The objective is to minimize
the distance between the samples within a view and the class prototype
after clustering, while maximizing the weights of views that yield the
best clustering results.
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The second term aims to minimize the disagreements between
different views. We introduce the factor 𝐾[𝑡, 𝑠] ∈ [0, 1]. We assume that
there is no collaboration between the view and itself. Thus, 𝐾[𝑡, 𝑠] is
set to 0 when 𝑡 = 𝑠. The default value of 𝐾[𝑡, 𝑠] is set to 1 when 𝑡 ≠ 𝑠
or simplification. The parameter 𝜂 is used to measure the degree of
nfluence of this term.

In the third term, to control for extreme changes in view weights,
he Shannon entropy of view weights is introduced to improve the

smoothness of the weight distribution. 𝛽 is the Shannon’s entropy of
eight parameter, which assists in adaptively regulating the distribu-

ion of view weights so that they are as evenly distributed as possible
hile ensuring the optimal clustering of view weights. In brief, it

egulates the impact of this term on the clustering results.

3.2. Update and optimization

In this subsection, we present the solution to the optimization prob-
lem from an analytical perspective. We employ the well-established Co-
ordinate Descent (CD) algorithm [32], known for its simplicity and effi-
ciency in non-gradient optimization, to minimize the defined objective
function.

Mathematically, focusing min𝑥1 ,𝑥2 ,…,𝑥𝑛∈𝛩 𝑓
(

𝑥1, 𝑥2,… , 𝑥𝑛
)

, where 𝛩
s an arbitrary constraint and 𝑓 is the objective function. If 𝑥𝑘 =

(

𝑥𝑘1 ,
… , 𝑥𝑘𝑖−1, 𝑥𝑘𝑖 , 𝑥𝑘𝑖+1,… , 𝑥𝑘𝑛

)

is given as the current iteration at the 𝑘th
teration, the algorithm generates the next iteration 𝑥𝑘+1 according to
he solutions of the following 𝑛 subproblems

𝑥𝑘+1𝑖 ← ar gmin𝑦 𝑓
(

𝑥𝑘+11 ,… , 𝑥𝑘+1𝑖−1 , 𝑦, 𝑥𝑘𝑖+1,… , 𝑥𝑘𝑛
)

, 𝑖 = 1, 2,… , 𝑛.
This makes sure that 𝑓 does not increase. Back to our min𝑴 ,𝑽 ,𝒘 𝐽MvWECM
with linear constraints, we update one variable while holding others
fixed, leveraging the method of Lagrange multipliers to solve these
ubproblems. Through this alternating cyclic process, achieving conver-
ence to a local optimum is ensured. The following outlines the detailed
omputational process.

• Update the credal membership

We start by defining the update rule for the belief assignment
[𝑡] by assuming the view weight 𝑤[𝑡] and class center 𝑽 [𝑡] is fixed.

o solve the constrained minimization problem with respect to 𝑴[𝑡],
× 𝑇 Lagrange multipliers 𝜆𝑖[𝑡] are introduced. The resulting Lagrange

unction 𝐿(𝑴[𝑡], 𝜆[𝑡]) is

𝐿(𝑴[𝑡], 𝜆[𝑡]) = 𝐽MvWECM −
𝑇
∑

𝑡=1

𝑛
∑

𝑖=1
𝜆𝑖[𝑡]

⎛

⎜

⎜

⎝

∑

{𝑗|𝐴𝑗⊆𝛺 ,𝐴𝑗≠∅}
𝑚𝑖𝑗 [𝑡] + 𝑚𝑖∅[𝑡] − 1

⎞

⎟

⎟

⎠

.

(23)

Differentiating the above equation with respect to 𝑚𝑖𝑗 [𝑡], 𝑚𝑖∅[𝑡] and 𝜆𝑖[𝑡]
(determined 𝑖, 𝑗 , 𝑡) and letting the differential equation be zero, one
obtains
𝜕 𝐿(𝑴[𝑡], 𝜆[𝑡])

𝜕 𝑚𝑖𝑗 [𝑡]
= 2𝑤[𝑡]𝑐𝛼𝑗 𝑚𝑖𝑗 [𝑡]𝑑2𝑖𝑗 [𝑡]

+ 2𝜂
𝑇
∑

𝑠≠𝑡
𝐾[𝑡, 𝑠](𝑚𝑖𝑗 [𝑡] − 𝑚𝑖𝑗 [𝑠])𝑑2𝑖𝑗 [𝑡] − 𝜆𝑖[𝑡] = 0, (24)

𝜕 𝐿(𝑴[𝑡], 𝜆[𝑡])
𝜕 𝑚𝑖∅[𝑡]

= 2𝑤[𝑡]𝛿2[𝑡]𝑚𝑖∅[𝑡] − 𝜆𝑖[𝑡] = 0, (25)

and
𝜕 𝐿(𝑴[𝑡], 𝜆[𝑡])

𝜕 𝜆𝑖[𝑡]
= −

∑

{𝑗|𝐴𝑗⊆𝛺 ,𝐴𝑗≠∅}
𝑚𝑖𝑗 [𝑡] − 𝑚𝑖∅[𝑡] + 1 = 0. (26)

From Eqs. (24) and (25), it follows that:

𝑚𝑖𝑗 [𝑡] =
𝜂 𝜑𝑖𝑗 [𝑡]

𝑤[𝑡]𝑐𝛼 + 𝜂 𝜓[𝑡] +
𝜆𝑖[𝑡]

(

𝛼
)

2 (27)

𝑗 2 𝑤[𝑡]𝑐𝑗 + 𝜂 𝜓[𝑡] 𝑑𝑖𝑗 [𝑡]

5 
and

𝑚𝑖∅[𝑡] =
𝜆𝑖[𝑡]

2𝑤[𝑡]𝛿2[𝑡]
, (28)

where

𝜓[𝑡] =
𝑇
∑

𝑠≠𝑡
𝐾[𝑡, 𝑠], (29)

𝑖𝑗 [𝑡] =
𝑇
∑

𝑠≠𝑡
𝐾[𝑡, 𝑠]𝑚𝑖𝑗 [𝑠]. (30)

Substituting Eqs. (27) and (28) into Eq. (26), the Lagrange multiplier
𝜆𝑖[𝑡] can be represented by the view weight and class center as

𝜆𝑖[𝑡] =
1 −∑

{

𝑗∣𝐴𝑗⊆𝛺 ,𝐴𝑗≠∅}
𝜂 𝜑𝑖𝑗 [𝑡]

𝑤[𝑡]𝑐𝛼𝑗 +𝜂 𝜓[𝑡]
∑

{

𝑗∣𝐴𝑗⊆𝛺 ,𝐴𝑗≠∅}
1

2
(

𝑤[𝑡]𝑐𝛼𝑗 +𝜂 𝜓[𝑡]
)

𝑑2𝑖𝑗 [𝑡]
+ 1

2𝑤[𝑡]𝛿2[𝑡]

. (31)

Substituting Eq. (31) into Eq. (27), and by Eq. (26), the basic belief
ssignment 𝑴[𝑡] is updated to
𝑚𝑖𝑗 [𝑡] =

𝜂 𝜑𝑖𝑗 [𝑡]
𝑤[𝑡]𝑐𝛼𝑗 + 𝜂 𝜓[𝑡]

+

(

1 −∑

{

𝑗∣𝐴𝑗⊆𝛺 ,𝐴𝑗≠∅}
𝜂 𝜑𝑖𝑗 [𝑡]

𝑤[𝑡]𝑐𝛼𝑗 +𝜂 𝜓[𝑡]
𝛼

)

1
(

𝑤[𝑡]𝑐𝛼𝑗 +𝜂 𝜓[𝑡]
)

𝑑2𝑖𝑗 [𝑡]

∑

{

𝑗∣𝐴𝑗⊆𝛺 ,𝐴𝑗≠∅}
1

(

𝑤[𝑡]𝑐𝛼𝑗 +𝜂 𝜓[𝑡]
)

𝑑2𝑖𝑗 [𝑡]
+ 1

𝑤[𝑡]𝛿2[𝑡]

,

(32)

𝑚𝑖∅[𝑡] = 1 −
∑

{𝑗|𝐴𝑗⊆𝛺 ,𝐴𝑗≠∅}
𝑚𝑖𝑗 [𝑡], 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 . (33)

• Update the view weight

By fixing the basic belief assignment 𝑴[𝑡] and class center 𝑽 [𝑡], the
view weight 𝑤[𝑡] is updated using the Lagrange multiplier method, with
the corresponding Lagrange function given as

𝐿(𝑤[𝑡], 𝜇) = 𝐽MvWECM − 𝜇

( 𝑇
∑

𝑡=1
𝑤[𝑡] − 1

)

, (34)

where 𝜇 is the Lagrange multiplier. Differentiating 𝐿(𝑤[𝑡], 𝜇) with
respect to 𝑤[𝑡] and 𝜇, respectively, it follows that:
𝜕 𝐿(𝑤[𝑡], 𝜇)
𝜕 𝑤[𝑡] =

𝑛
∑

𝑖=1

∑

{𝑗|𝐴𝑗⊆𝛺 ,𝐴𝑗≠∅}
𝑐𝛼𝑗 𝑚

2
𝑖𝑗 [𝑡]𝑑

2
𝑖𝑗 [𝑡]

+
𝑛
∑

𝑖=1
𝛿2[𝑡]𝑚2

𝑖∅[𝑡] + 𝛽(1 + log𝑤[𝑡]) − 𝜇 = 0, (35)

and

𝜕 𝐿(𝑤[𝑡], 𝜇)
𝜕 𝜇 = −

𝑇
∑

𝑖=1
𝑤[𝑡] + 1 = 0. (36)

Denote

𝛥[𝑡] =
𝑛
∑

𝑖=1

∑

{𝑗|𝐴𝑗⊆𝛺 ,𝐴𝑗≠∅}
𝑐𝛼𝑗 𝑚

2
𝑖𝑗 [𝑡]𝑑

2
𝑖𝑗 [𝑡] +

𝑛
∑

𝑖=1
𝛿2[𝑡]𝑚2

𝑖∅[𝑡]. (37)

Therefore, from Eq. (35), one obtains

𝛥[𝑡] + 𝛽(log𝑤[𝑡] + 1) − 𝜇 = 0, (38)

Eq. (38) is equivalent to
𝑤[𝑡] = exp

{

−𝛥[𝑡] − 𝛽
𝛽

}

exp
{

𝜇
𝛽

}

. (39)

Substituting the above equation into Eq. (36), we have
𝑇
∑

exp
{

−𝛥[𝑡] − 𝛽
𝛽

}

exp
{

𝜇
𝛽

}

= 1. (40)

𝑡=1
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From the above equation, it is obtained that

exp
{

𝜇
𝛽

}

= 1
∑𝑇
𝑡=1 exp

{

−𝛥[𝑡]−𝛽
𝛽

} . (41)

Substituting Eq. (41) into Eq. (39), we obtain the updated formula for
the view weight 𝑤[𝑡]

𝑤[𝑡] =
exp

{

−𝛥[𝑡]−𝛽
𝛽

}

∑𝑇
𝑖=1 exp

{

−𝛥[𝑖]−𝛽
𝛽

} , 𝑡 = 1, 2,… , 𝑇 . (42)

• Update the class prototypes

Fix the basic belief assignments 𝑴[𝑡] and view weight 𝑤[𝑡], and we
can find the best clustering center 𝑽 [𝑡] by differentiating 𝐽MvWECM with
respect to the class center:

𝜕 𝐽
𝜕𝒗𝑙[𝑡]

= 𝑤[𝑡]
𝑛
∑

𝑖=1

∑

{𝑗|𝐴𝑗⊆𝛺 ,𝐴𝑗≠∅}
𝑐𝛼𝑗 𝑚

2
𝑖𝑗 [𝑡]

𝜕 𝑑2𝑖𝑗 [𝑡]
𝜕𝒗𝑙[𝑡]

+ 𝜂
𝑇
∑

𝑠≠𝑡
𝐾[𝑡, 𝑠]

𝑛
∑

𝑖=1

∑

{𝑗|𝐴𝑗⊆𝛺 ,𝐴𝑗≠∅}
(𝑚𝑖𝑗 [𝑡] − 𝑚𝑖𝑗 [𝑠])2

𝜕 𝑑2𝑖𝑗 [𝑡]
𝜕𝒗𝑙[𝑡]

, (43)

where
𝜕 𝑑2𝑖𝑗 [𝑡]
𝜕𝒗𝑙[𝑡]

= −2 1
𝑐𝑗
𝑠𝑙 𝑗𝒙𝑖[𝑡] + 2 1

𝑐2𝑗

𝑐
∑

ℎ=1
𝑠𝑙 𝑗𝑠ℎ𝑗𝒗ℎ[𝑡],

𝑙 = 1, 2,… , 𝑐; 𝑡 = 1, 2,… , 𝑇 .
(44)

The following linear equation for solving 𝒗ℎ[𝑡] can be obtained by
aking the differential Eq. (43) equal to zero:
𝑐
∑

ℎ=1
𝒗ℎ[𝑡]

𝑇
∑

𝑠≠𝑡
𝜂 𝐾[𝑡, 𝑠]

𝑛
∑

𝑖=1

∑

{𝑗|{𝑤𝑙 ,𝑤𝑘}⊆𝐴𝑗}
(𝑚𝑖𝑗 [𝑡] − 𝑚𝑖𝑗 [𝑠])2 1

𝑐2𝑗

+
𝑐
∑

ℎ=1
𝒗ℎ[𝑡]

𝑛
∑

𝑖=1

∑

{𝑗|{𝑤𝑙 ,𝑤𝑘}⊆𝐴𝑗}
𝑤[𝑡]𝑐𝛼−2𝑗 𝑚2

𝑖𝑗 [𝑡]

=
𝑛
∑

𝑖=1
𝒙𝑖[𝑡]

∑

{𝑗|𝑤𝑙∈𝐴𝑗}
𝑤[𝑡]𝑐𝛼−1𝑗 𝑚2

𝑖𝑗 [𝑡]

+
𝑛
∑

𝑖=1
𝒙𝑖[𝑡]

𝑇
∑

𝑠≠𝑡
𝜂 𝐾[𝑡, 𝑠]

∑

{𝑗|𝑤𝑙∈𝐴𝑗}
(𝑚𝑖𝑗 [𝑡] − 𝑚𝑖𝑗 [𝑠])2 1

𝑐𝑗
. (45)

Let 𝑩[𝑡] be the matrix of (𝑐 × 𝑞𝑡) defined by

𝐵𝑙 𝑘[𝑡] =
𝑛
∑

𝑖=1
𝑥𝑖𝑘[𝑡]

∑

{𝑗|𝜔𝑙⊆𝐴𝑗}
𝑐𝛼−1𝑗 𝑚2

𝑖𝑗 [𝑡]𝑤[𝑡], 𝑙 = 1, 2,… , 𝑐; 𝑘 = 1, 2,… , 𝑞𝑡.

(46)

Let 𝑩[𝑡, 𝑠] be the matrix of (𝑐 × 𝑞𝑡) defined by

𝐵𝑙 𝑘[𝑡, 𝑠] =
𝑛
∑

𝑖=1
𝑥𝑖𝑘[𝑡]

∑

{𝑗|𝜔𝑙∈𝐴𝑗}
(𝑚𝑖𝑗 [𝑡] − 𝑚𝑖𝑗 [𝑠])2 1

𝑐𝑗
,

𝑙 = 1, 2,… , 𝑐; 𝑘 = 1, 2,… , 𝑞𝑡.
(47)

Let 𝑯[𝑡] be the matrix of (𝑐 × 𝑐) defined by

𝐻𝑙 ℎ[𝑡] =
𝑛
∑

𝑖=1

∑

{𝑗|{𝜔𝑙 ,𝜔𝑘}⊆𝐴𝑗}
𝑤[𝑡]𝑐𝛼−2𝑗 𝑚2

𝑖𝑗 [𝑡], 𝑙 , ℎ = 1, 2,… , 𝑐 . (48)

Let 𝑯[𝑡, 𝑠] be the matrix of (𝑐 × 𝑐) defined by

𝐻𝑙 ℎ[𝑡, 𝑠] =
𝑛
∑

𝑖=1

∑

{𝑗|{𝜔𝑙 ,𝜔𝑘}⊆𝐴𝑗}
(𝑚𝑖𝑗 [𝑡] − 𝑚𝑖𝑗 [𝑠])2 1

𝑐2𝑗
, 𝑙 , ℎ = 1, 2,… , 𝑐 . (49)

Based on the above matrix definition, the class center update formula
or the 𝑡th view can be obtained as

𝑽 [𝑡] =
(

𝑯[𝑡] +
𝑇
∑

𝑠≠𝑡
𝜂 𝐾[𝑡, 𝑠]𝑯[𝑡, 𝑠]

)−1 (

𝑩[𝑡] +
𝑇
∑

𝑠≠𝑡
𝜂 𝐾[𝑡, 𝑠]𝑩[𝑡, 𝑠]

)

. (50)
6 
Using the iterative update process described above, we can deter-
mine the optimal credal partition for each view. The final global credal
partition is then derived by applying a weighted sum to the basic belief
assignments from the various views. The formula is as follows:

𝑴∗ =
𝑇
∑

𝑡=1
𝑤[𝑡]𝑴[𝑡]. (51)

The proposed MvWECM method is summarized in Algorithm 1 in
detail.

3.3. Complexity

As MvWECM is to provide credal partitions for each object, it
distributes a fraction of the unit mass to each element of 2𝛺 with

= {𝜔1,… , 𝜔𝑐}. When updating the belief assignment 𝑴 and view
weight 𝒘, the complexity is 𝑂(𝑛𝑇 2𝑐 ). The complexity of other processes
is below 𝑂(𝑛𝑇 2𝑐 ), where 𝑛, 𝑇 , 𝑐 are the number of objects, views and
classes, respectively. Notice that the complexity grows exponentially
with the number of class clusters 𝑐, it leads to more time cost. We can
reduce the complexity of the method by considering a limited number
of focal sets [19,33]. For example, the focal sets can be constrained
o be either 𝛺, ∅, or to be composed of at most two classes, thereby
educing the complexity from 2𝑐 to 𝑐2. In this case, the complexity will

be 𝑂(𝑛𝑇 𝑐2).

Algorithm 1 MvWECM.
Input: The dataset 𝑿 = {𝑿[1],𝑿[2],⋯ ,𝑿[𝑇 ]}, 4 non-negative param-

eters 𝛼, 𝛽, 𝛿 and 𝜂, the number of clusters 𝑐, the maximum number
of iterations 𝑖max, the threshold 𝜖.

1: Initialization: iteration 𝑖 = 0, basic belief assignment matrix
𝑴[𝑡] = 𝑴0[𝑡], class prototype 𝑽 [𝑡] = 𝑽 0[𝑡], view weight 𝑤[𝑡] = 1∕𝑇 ,
strength of collaboration 𝐾[𝑡, 𝑡] = 0, ∀𝑡 = 1, 2,⋯ , 𝑇 .

2: Calculate the objective function 𝐽 via Eq. (20).
3: repeat
4: 𝑖 ← 𝑖 + 1.
5: 𝐽old = 𝐽 .
6: Update the basic belief assignment 𝑴 via Eq. (32) and Eq. (33).
7: Update the view weight 𝒘 via Eq. (42).
8: Update the class center 𝑽 via Eq. (50).
9: Update the objective function 𝐽 via Eq. (20).
0: until |𝐽 − 𝐽old| < 𝜖 or 𝑖 ≥ 𝑖max.
1: Calculate the global credal partition 𝑴∗ via Eq. (51).
utput: Global credal partition 𝑴∗, view weight 𝒘, and class center
𝑽 of each view.

4. Experiments

In this section, we test the effectiveness of the MvWECM approach
by conducting thorough experiments on seven multi-view datasets,
each involving eight competing methods. Three evaluation metrics are
utilized, including two for hard partitions and one for credal partitions,
making them comprehensively assess results of different methods. Our
implementation is available at: https://github.com/H1nkik/MvWECM.

4.1. Datasets

We first briefly introduce seven real datasets used in our experi-
ents.

• WebKB dataset4 (Webkb) [34]: It consists of 203 web-pages of 4
classes. Each web-page is described by the content of the page,
the anchor text of the hyper-link, and the text in its title.

https://github.com/H1nkik/MvWECM
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Table 2
Description of Benchmarks.

Dataset Objects Clusters Views Dimensions of features

View 1st View 2nd View 3rd View 4th View 5th View 6th

Prok 551 4 3 438 3 393 – – –
Webkb 203 4 3 1703 203 203 – – –
IS 2100 7 2 9 10 – – – –
Caltech07 1474 7 6 48 40 254 1984 512 928
3sources 169 6 3 3560 3631 3068 – – –
Reuters-1500 1500 6 5 21 531 24 893 34 279 15 506 11 547 –
Reuters-18758 18 758 6 2 10 10 – – – –
a
f

p
t
w

d

p
2
A
𝛼

• 3sources2: It contains 169 of 948 news articles dataset from
three well-known online news sources: BBC, Reuters, and The
Guardian, where each source is seen as one view.

• Prokaryotic phyla (Prok) [35]: It contains 551 prokaryotic species
described with heterogeneous multi-view data including textual
data and different genomic representations. Textual data consists
of bag-of-words representation of documents describing prokary-
otic species, while genomic representations include the proteome
composition and gene repertoire representations. Proteome com-
position is encoded as the relative frequencies of amino acids and
gene repertoire is encoded as the presence/absence indicators of
gene families in a genome.

• Image Segmentation3(training) (IS): 2100 of 2310 instances are
drawn from a database of 7 outdoor images randomly and com-
pose the training set. The images are hand segmented to create a
classification for every pixel.

• Caltech101-7 (Caltech07) [36]: It contains 1474 pictures of ob-
jects belonging to 7 classes (i.e., Face, Dollar-Bill, Motorbikes,
Stop-Sign, Garfield, Snoopy, and Windsor-Chair). All images are
described with six types of features (254 CENTRIST, 48 Gabor,
512 GIST, 1984 HOG, 928 LBP, and 40 wavelet moments).

• Reuters-1500 [36]: It collects 1500 documents which are ex-
pressed in five different languages (Italian, Spanish, French, Ger-
man and English). All the documents are categorized into 6
classes.

• Reuters-18758 [37]: This dataset comprises 18758 samples as a
subset of Reuters. It includes the English version along with trans-
lations in different languages. The dataset contains six classes,
consistent with those in Reuters-1500.

The summary of these datasets is presented in Table 2.

4.2. Evaluation metrics

Drawing from prior research, we use three evaluation metrics to
easure the clustering performance: Adjusted Rand Index (ARI) [38],

Normalized Mutual Information (NMI) [39] and Evidential Precision
EP) [24].

As ARI and NMI are used to measure the quality of hard partitions,
when evaluating the credal partitions provided by MvWECM and ECM,
we derive the corresponding hard partitions by assigning each sample
to the cluster with the highest Pignistic probability (see Eq. (6)).
For these two metrics, the higher value indicates better clustering
performance. In credal partitions, imprecise classes are introduced to
apture the uncertainty associated with sample categories. When the

available information does not permit the determination of a specific
lass, samples are classified into imprecise classes. This mechanism
nsures the accuracy of the partition results for samples assigned into

2 http://mlg.ucd.ie/datasets/3sources.html.
3 https://archive.ics.uci.edu/dataset/50/image+segmentation.
 d
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specific classes. To account for this, EP has been introduced to evalu-
te the assignment precision of credal partitions, which is defined as
ollows [24]:

𝐸 𝑃 =
𝑛𝑒𝑟
𝑁𝑒

, (52)

where 𝑁𝑒 denotes the number of pairs partitioned into the same specific
class by credal partitions, while 𝑛𝑒𝑟 is the number of relevant instance
airs out of these specifically clustered pairs. For hard partitions, where
here is no imprecise classes, EP is equivalent to the classical Precision,
hich measures the ratio of relevant pairs (those in the same group in

the benchmark) to the pairs found (those in the same group within the
iscovered clusters). The closer the EP is to 1, the better the result is.

4.3. Compared algorithms and parameters setup

• Algorithms. The proposed MvWECM is compared with ECM [19],
and 7 SoTA multi-view clustering algorithms including 1 MVC
based on learning consensus graph (MCGC) [29], 1 MVC based
on hard clustering and weights of views and features (TW-CO-
KM) [11], 1 MVC based on collaborative fuzzy clustering and
sparse membership (MVASM) [14], 1 MVC based on fuzzy cluster-
ing and features reduction (CO-FW-MVFCM) [12], 1 MVC based
on a weighted Procrustes analysis (AWP) [5], 1 MVC within
a unified framework of fusion distance, adjacency-constrained
nearest neighbor clustering and internal evaluation index (MCHC)
[30], 1 MVC based on tensor learning and self-expressiveness
learning (CHOC-MVC) [31]. As ECM is designed to handle single-
view data, we merge the multi-view data in the order of the views
to become a large dataset on which ECM runs.

• Parameters. All numbers of iterations, errors and parameters of
all comparison methods are default as their papers (procedures)
are. In detail, ECM follows default settings, namely, 𝛼 = 1, 𝛿 = 10.
MCGC and CO-FW-MVFCM have only one parameter 𝛽 and 𝑚,
respectively. Their values are said to be 𝛽 = 0.6 and 𝑚 = 2,
consistent with the specifications in their papers. TW-CO-KM has
three parameters. We apply to make parameters same with theirs,
namely, 𝛽 = 10, 𝛼 = 70, 𝜂 = 0.45 for IS and 𝛽 = 8, 𝛼 = 45, 𝜂 = 0.45
for the others. MVASM has its unique range of parameters, and we
have searched for the optimal parameters following the illustra-
tion, namely, 𝑞 ∈ [1, 6], step = 0.01; 𝛾 ∈ [0, 6], step = 0.1. AWP is
a non-parameters method that requires no additional parameters
settings. For MCHC, no changes have been made from the default
codes. For CHOC-MVC, we search the optimal parameters 𝛽 and 𝜆
in the ranges of [102, 105] and [10−1, 105] respectively, as suggested
by the authors.

4.4. Experiment analysis

For one given dataset, each algorithm is repeated by 5 times which
erformed on an Intel(R) Core(TM) i7-13700 @2.10 GHz CPU with
4 GB RAM. The average values and standard deviations are reported.
t the same time, the paired 𝑡-test is applied at significance level
= 0.05 to verify whether the MvWECM outperforms statistically. The
etailed results are shown in Table 3, Tables 4 and 5. In the tables,

http://mlg.ucd.ie/datasets/3sources.html
https://archive.ics.uci.edu/dataset/50/image+segmentation
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Table 3
Adjusted Rand Index of different algorithms. ▴/▿ indicates our proposed algorithm is statistically superior or inferior to other algorithms at 𝛼 = 0.05. ‘‘OOM’’
means the method raises the out-of-memory failure.

MvWECM MCGC ECM TW-CO-KM MVASM CO-FW-MVFCM AWP CHOC-MVC MCHC

Webkb 0.3727.00 0.3564.00▴ −0.0574.00▴ 0.2022.27 0.3597.02 0.1098.15▴ 0.2959.00▴ 0.2561.00▴ 0.0000.00▴
3sources 0.3324.03 −0.0382.00▴ 0.0434.10▴ 0.1189.18▴ 0.2329.10▴ 0.1948.04▴ 0.2947.00▴ 0.0548.00▴ 0.4285.00▿

Prok 0.2119.01 −0.0062.00▴ −0.0133.01▴ 0.1980.03 0.1300.00▴ 0.1198.06▴ 0.0876.00▴ 0.1722.00▴ 0.1256.00▴
IS 0.1113.00 0.0000.00▴ 0.0725.00▴ 0.0965.01▴ 0.0797.00▴ 0.0292.02▴ 0.0660.00▴ 0.0674.00▴ 0.0002.00▴

Caltech07 0.5395.04 0.3987.00▴ 0.3371.00▴ 0.3510.03▴ 0.3991.00▴ 0.3446.01▴ 0.4993.00▴ 0.5388.00 0.3002.00▴
Reuters-1500 0.0764.01 −0.0053.00▴ 0.0000.00▴ 0.0580.08 0.0472.11 0.0790.00 −0.0004.00▴ 0.0000.00▴ 0.0060.00▴
Reuters-18758 0.1107.01 0.0000.00▴ 0.0804.00▴ 0.0885.09 0.1078.01 0.0000.00▴ −0.0031.00▴ OOM▴ 0.0441.00▴
Table 4
Normalized Mutual Information of different algorithms. ▴/▿ indicates our proposed algorithm is statistically superior or inferior to other algorithms
at 𝛼 = 0.05. ‘‘OOM’’ means the method raises the out-of-memory failure.

MvWECM MCGC ECM TW-CO-KM MVASM CO-FW-MVFCM AWP CHOC-MVC MCHC

Webkb 0.2994.00 0.2923.00▴ 0.0330.01▴ 0.2046.20 0.2947.01 0.0985.12▴ 0.2714.00▴ 0.2555.00▴ 0.0000.00▴
3sources 0.3567.03 0.1418.00▴ 0.5148.04▿ 0.2532.19 0.3959.07 0.2572.03▴ 0.4157.00▿ 0.2067.00▴ 0.5468.00▿

Prok 0.3313.01 0.0147.00▴ 0.0723.07▴ 0.3128.02▴ 0.2422.00▴ 0.2109.04▴ 0.2285.00▴ 0.1885.00▴ 0.2923.00▴
IS 0.1812.01 0.0255.00▴ 0.1330.00▴ 0.1730.02 0.1776.00 0.0481.03▴ 0.1746.00▴ 0.1004.00▴ 0.0398.00▴

Caltech07 0.3948.02 0.4993.00▿ 0.3534.00▴ 0.4912.03▿ 0.4355.01▿ 0.3774.03 0.5967.00▿ 0.7614.00▿ 0.4654.00▿
Reuters-1500 0.0775.01 0.1012.00▿ 0.0000.00▴ 0.1060.07 0.0656.11 0.1267.00▿ 0.1368.00▿ 0.0000.00▴ 0.0785.00
Reuters-18758 0.0966.01 0.0073.00▴ 0.0538.00▴ 0.1193.11 0.1431.01▿ 0.0000.00▴ 0.0162.00▴ OOM▴ 0.1490.00▿
Table 5
Evidential Precision (Precision) of different algorithms. ▴/▿ indicates our proposed algorithm is statistically superior or inferior to other algorithms
at 𝛼 = 0.05. ‘‘OOM’’ means the method raises the out-of-memory failure.

MvWECM MCGC ECM TW-CO-KM MVASM CO-FW-MVFCM AWP CHOC-MVC MCHC

Webkb 0.5800.00 0.5734.00▴ 0.5916.04 0.4972.01 0.5598.04 0.4484.07▴ 0.6152.00▿ 0.5876.00 0.0000.00▴
3sources 0.4009.02 0.2166.00▴ 0.0000.00▴ 0.2922.09▴ 0.6446.04 0.3589.01▴ 0.3203.00▴ 0.7323.00▿ 0.6030.00▿

Prok 0.6551.01 0.3923.00▴ 0.0000.00▴ 0.5625.03▴ 0.3924.00▴ 0.4763.05▴ 0.4647.00▴ 0.6011.00▴ 0.4822.00▴
IS 0.2545.01 0.1425.00▴ 0.1979.00▴ 0.2196.02▴ 0.2219.00▴ 0.1670.01▴ 0.1824.00▴ 0.1976.00▴ 0.1425.00▴

Caltech07 0.7223.03 0.7488.00▿ 0.0000.00▴ 0.8453.03▿ 0.6270.20 0.7050.04 0.7707.00▿ 0.4984.00▴ 0.7420.00
Reuters-1500 0.3044.06 0.2136.00▴ 0.0000.00▴ 0.2448.04▴ 0.2395.05▴ 0.2632.00 0.2155.00▴ 0.0000.00▴ 0.2194.00▴
Reuters-18758 0.3054.06 0.2140.00▴ 0.2854.06 0.1881.17 0.2845.01 0.2140.00▴ 0.2127.00▴ OOM▴ 0.2466.00
2

i
r
a
o

the top-ranked result is highlighted in red, and the second-ranked
result is highlighted in blue. To be more intuitive and be illustrated
onveniently, the t-SNE method [40] is utilized to check over the

clustering effects of views on 2D. The figures of IS, 3sources and Prok
are shown in Fig. 3, Figs. 4 and 5, respectively.

The results by ECM show that traditional evidential clustering algo-
ithm cannot handle multi-view data effectively because every single
iew provides different data structure (e.g. one is sparse matrix, another
ne is high rank matrix). Compared to other multi-view methods, the
roposed MvWECM generally outperforms them. In sum, MvWECM is
tatistically superior in 67.9%(114/168) and equal in 19.6% (33/168)
 In addition, those values of ARI that are close to 0 mean that
ach partition is essentially equivalent to a random partition basically.
hen MCGC cannot learn the graph structure and embedding matrix

orrectly, the performance is approximately equal to random clustering.
hus, negative values indicate that the performance is worse than that
f a random distribution. In specific, AWP outperforms on Caltech07
hich has 6 views because it considers capacity difference of different
iews by a unified matrix. For the Reuters-1500 dataset, the abundant
igh-dimensional features dilute the complementary information be-
ween views. In the Reuters-18758 dataset, the large number of samples
equires substantial computational resources. Both datasets pose signif-
cant challenges for existing multi-view clustering methods. MvWECM
ttains the highest EP on these datasets, demonstrating efficiency and
nhanced accuracy in cluster determination for complex datasets.

In addition, certain approaches may exhibit superior performance
when ARI is employed as a metric, while falling short when NMI or
EP metrics are considered. For example, the TW-CO-KM algorithm and
he MVASM algorithm perform opposite on the IS dataset and the
altech07 dataset. However, in general, the larger the ARI value, the

arger the NMI or EP value. This is exactly what was mentioned earlier,
 c
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i.e., the three metrics measure the clustering effect in three aspects, thus
evaluating the algorithm performance more comprehensively.

As we can see from Figs. 3 and 5, it is evident that the IS and
Prok datasets exhibit a high degree of overlap. The notable superiority
of MvWECM over other state-of-the-art methods across all evalua-
tion metrics in these two datasets is particularly pronounced. This
can be attributed to the incorporation of credal partitions, enhanc-
ing our method’s ability to address uncertain information, potentially
originating from overlapping data points.

4.5. Parameter analysis

First, by fixing 𝛼 = 1, 𝜂 = 1, we conduct analyzes with 𝛿 ranges from
 to 20 and 𝛽 ranges from 1 to 350. From Fig. 6, it can be inferred that

both of them play important roles in ARI. The change of 𝛽 , 𝛿 can make
measurement higher or lower gradually or sharply. In fact, choosing a
proper value of 𝛽 is important for tasks. We have

𝑤[𝑙]
𝑤[𝑚]

=
exp

{

−𝛥[𝑙]−𝛽
𝛽

}

exp
{

−𝛥[𝑚]−𝛽
𝛽

} = exp
{

𝛥[𝑚] − 𝛥[𝑙]
𝛽

}

,∀𝑚 ≠ 𝑙 .

When 𝛽 → ∞,

lim
𝛽→∞

𝑤[𝑙]
𝑤[𝑚]

= lim
𝛽→∞

exp
{

𝛥[𝑚] − 𝛥[𝑙]
𝛽

}

= exp
{

lim
𝛽→∞

𝛥[𝑚] − 𝛥[𝑙]
𝛽

}

= 1.

It implies that every view has equal importance which is not suitable
n real applications. Besides, The clustering algorithm tends to assign
elatively greater weights to the view with the smallest 𝛥[𝑡] when 𝛽 → 0,
nd the final global clustering result learns information from mainly
ne view, which may ignore some critical information in multi-view
lustering tasks.
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Fig. 3. Clustering results of IS visualized by t-SNE on 2D.

Fig. 4. Clustering results of 3sources visualized by t-SNE on 2D.

Fig. 5. Clustering results of Prok visualized by t-SNE on 2D.

Fig. 6. Clustering results of ARI with fixed 𝛼 and 𝜂.

Fig. 7. Clustering results of ARI with fixed 𝛿 and 𝛽.
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Fig. 8. Visualization of weights of view in each iteration on IS and 3sources.
Second, by fixing 𝛽 , 𝛿 which lead to the best performance before, we
conduct analyzes and discover that these two parameters may decide
whether the MvWECM works (see Fig. 7). We can see that increasing
the cardinality will make a larger value of 𝛥[𝑡] in Eq. (37), which may
lead to accuracy overflows due to exponential function.

In sum, we suggest that parameters settings are 𝛼 ∈ [1, 2], 𝜂 ∈
[1, 9], 𝛽 ∈ [1, 350] and 𝛿 ∈ [2, 20].

After analyzing the effect of the parameters on the indicator values,
we further analyze the effect of the algorithm on the view weights.
In terms of weights of different views, the view which gains better
clustering results matches higher weights. The specific change of view
weights is indicated by the line graph below. We use the red dashed
line to indicate the uninformative view weights, i.e., each view has the
same importance.

As can be seen in Fig. 8, view weights change gradually at the
beginning. These view weights will be stable when number of iteration
overpasses half. It is clear from Fig. 3 that the data in the first view of
the IS is more dispersed, e.g. the yellow, light green and dark green data
points are all more dispersed compared to these three categories in the
second view. In contrast, the data in the second view is clearer overall.
This is consistent with a greater value of weights of the second view as
our algorithm converges. In terms of 3sources, the data of the first view
is more divisible, e.g., the yellow ones are mainly concentrated in the
lower right of Fig. 4, and the green ones are more concentrated in the
upper left of the figure. The data distributions of the second and third
views are similar and both have special outliers, thus both views obtain
approximate weights. Therefore, the first view gets a higher weight,
while other views get lower weights instead.

To experimentally demonstrate the convergence property of
MvWECM, we present the convergence curves of MvWECM on the
Webkb, Reuters-1500, Reuters-18758, 3sources, and IS datasets in
Fig. 9. The values of the objective function generally decrease as
the iterations progress. Nevertheless, it is important to note that the
algorithm may become stuck in a local minimum. As demonstrated by
the curve for the 3sources dataset, the objective function value sharply
decreases during the first two iterations, indicating that it is likely
trapped in a local optimum. The experimental results for the 3sources
dataset further illustrate this phenomenon.

In sum, compared to those SoTA based on crisp or fuzzy partitions,
the experimental results illustrate that MvWECM within the framework
of belief functions is more reliable in handling overlapping data that
lead to ambiguity. This superiority is particularly evident in the results
obtained from the Prok and IS datasets. The visualizations also validate
the reasonableness of the view weight assignment and fast convergence
of our algorithm. Besides, the thorough analysis of the parameters show
the rationale behind different terms in the objective function.
10 
5. Conclusion

In this study, we introduce a novel clustering method for multi-
view uncertain data, named MvWECM, within the framework of belief
functions. The objective function of MvWECM is defined based on
the concept of credal partitions. As a result, it can well consider
the uncertainty in the cluster structure. Moreover, the collaborative
mechanism for effectively taking advantage of the information from
different views is designed by considering adaptive view weights. The
entropy of view weights is included to ensure their smooth transition.
The Lagrange multiplier method combining with Coordinate Descent
method is employed to iteratively update the cluster membership and
prototypes. Subsequently, the global credal membership is obtained by
a weighted sum of the optimal one in each view. The clustering perfor-
mance of MvWECM is demonstrated by experiments on different real
datasets. In the future, we plan to extend the method by incorporating
the sparse structure of features. This enhancement will render it more
applicable to high-dimensional datasets.
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Fig. 9. Convergence curves of MvWECM.
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